MURRAP User Guide
by Michael D. Glascock (1 January 2021)
Introduction

These programs are based on the original FORTRAN routines written in the 1970s by Edward
Sayre at the Brookhaven National Laboratory. For more information, see Sayre's article
available online "Brookhaven Procedures for Statistical Analyses of Multivariate Archaeometric
Data", BNL-21693. Available at http://www.osti.gov/energycitations. In the 1980s, the
routines were translated into Gauss language by Hector Neff. Revisions to make the routines
compatible with the Gauss Run-time GUI and additional programming (including help pages)
were made by William Grimm in 2000. Since 2008, all changes to the routines were made by
Michael Glascock. The freely distributed version of the program name is now called
MURRAP.GCG.

The Gauss Run-time GUI (graphical user interface) is a stand-alone freeware product
produced by Aptech, Inc. (www.aptech.com). A help file is included in the GUI for instructions
on using it. Particular aspects of the operation of the GUI are included in the following
instructions as needed.

Getting Started
You must have received this program by downloading it from the Archaeometry Lab at MURR
webpages or directly from Mike Glascock at MURR to be reading this now. You have therefore

already installed the Gauss Run-time as well as unzipped the MURR routines. The important
things to know about the Gauss GUI are on the toolbar:

Program List Directory List

I GSRUN - Command Input - Output O X
File Edit View Configure Run Debug Tools Window Help

D - = Al [murran geg | » -] [crgsuna 0 @
Run button Stop button Browse button

The Directory List: The directory or folder showing in this list is the one currently used by
GAUSS to find and save data files for its routines. When you start GAUSS, this will be the
directory containing the GAUSS program. If your data files are in another directory, you will
need to use the Browse button to locate it. The directory list will retain your most recently
used directories. We recommend using a separate directory for each project.


http://www.osti.gov/energycitations

The Program List: This contains a list of Gauss routines that you have already run. You can
select one of them and click on the arrow to the right to run it. If it is the first time you run
GAUSS, the Program List may be blank. If you type: run murrap.gcg after the GAUSS
command prompt (>>) in the Command Input window below the Toolbar and press the Enter
key -- this creates a menu for the MURR routines in the Command Input Window. You should
now have murrap.gcg in the Program List.

The Run Button When a program is visible in the Program List, clicking the Run button will
run it.

The Stop Button When a program is running, the Stop button becomes active and can be
clicked to stop the program (if the program is waiting for input you may then need to press
the Enter or Return key). If you stop the program (or if it stops because it encountered an
error) you can restart it by pressing the Run button while the program's name is visible in the
Program List window.

Using the MURRAP Menu

Running MURRAP.GCG displays a menu of options consisting of the MURR statistical
routines. Entering an option number after the "==>" prompt selects the option. A
parentheses appearing before the prompt contains the default option which will be selected
by pressing the Enter key without entering anything else. In most of the routines, entering
"quit" or “0” will return you to the main MURRAP menu. To exit MURRAP while at the main
menu, press the Enter key and you will be returned to the GAUSS prompt (>>), from which
you can close the GUASS program by selecting "Exit" from the "File" menu. You can also click
on the Stop button in the menu bar, but then you may also have to press the Enter key
before Stop takes effect.

When you enter the name of a dataset or file, do not include the file extension, except when
specifying a text output file, for which you will probably want to add the .txt extension.

Data Files

The data files used by this program are in a Gauss proprietary format. A routine has been
included to import data from Microsoft Excel. Files imported from Excel must be formatted in
a manner similar to the following:

ANID Site Name Ceramic Type As La Sm Cr
DMG0001 Sand Canyon Vies2 Verde Blackon 7.04 49.6 7.94 64.9
White
DMG0002 Sand Canyon Viesa Verde Blackon 5.20 36.6 5.97 455
White
DMGO0077 McElmo McEImo Alluvial Clay 10.42 314 5.70 54.3
DMGO0078 McElmo McEImo Alluvial Clay 10.58 41.8 7.28 59.6




The first row should contain the sample name header (ANID) and the variable names used
such as (Site name, Ceramic Type, As, La, Sm, Eu, etc.).

[Note: GAUSS is case-sensitive regarding elemental abbreviations, so CA is not treated as
equivalent to Ca. You may also have to be sure spaces have been deleted in the Excel files
because they may not be stripped during conversion]

Starting with the second row the spreadsheet cells must consist of the following:

Column A (ANID): Text column containing the sample names (nhot to exceed eight
alphanumeric characters).

Columns B, C, etc.: Either text columns containing descriptions or Numeric columns
containing elemental concentration data (the latter can only contain positive numbers
between 0.0 and 1,000,000).

If you edited the Excel file (removed columns or rows), be sure to save it and always close
Excel before importing the file into Gauss. The first blank row encountered will terminate the
input process.

Making Selections

At various places through the MURRAP you are expected to select from a list of variables or
element names. The element names are preceded by a number (e.g., 1 for Ca, 2 for Ba, etc.).
You can select by entering the name or the number. In general, entering numbers is much
easier.

When selecting multiple variables, you can enter:
1. “all” to select all of the variables or datasets in the list.
3. “1-5, 9-12" to select variables 1 thru 5 and 9 thru 12.
4. “not 6,8” to select all variables except humbers 6 and 8.

Saving Your Results

Some of the MURRAP routines offer the option of saving the results to a file, others do not.
When results are displayed with no option to save to a file, use the "Save As" command under
the "File" menu to save a text file containing what is in the command input-output window
below the task bar. The contents of the window can also be copied and pasted as with text in
a word processor. Tables displayed as text in the window can be pasted into an Excel cell and
converted to rows and columns using Excel's "Text to Columns" option under its "Data" menu.

Quitting a Routine

Some of the MURRAP routines offer options for quitting and returning to the main menu.
Typing "quit" or “0” will do the same in most routines. If an error occurs in a routine, you may
need to click the Stop button and press the Enter key stop the routine. The "File" menu
contains an "Exit" option, which may also be accomplished using the Ctrl and Q keyboard
combination.



Missing Values

Routines are included for listing missing values (option 3.3) or replacing them (option 2.5),
and some routines also offer the option to do this before performing an analysis.

These routine use the Mahalanobis distance metric to substitute approximations for the
missing values in your dataset. It attempts to minimize the Mahalanobis distance between
the sample with missing data and the centroid of the dataset. If the number of missing values
in a dataset is excessive (e.g., greater than 50%), the replacement will be unreliable. Also,
do not use this routine if you have more than one group represented in the dataset in which
case the approximations will be skewed.

Log Transformation

The concentration data in the GAUSS datasets are automatically transformed to base-10 log
values by each routine before any operations on the data are performed. This practice is
common when analyzing compositional data obtained from archaeological specimens due to
the advantages of logratios when interpreting geological compositional data. See Aitchinson
(1999) for a more detailed explanation.

Graphics (TKF) Files

Plots produced by MURRAP will be displayed in one or more separate "TKF File Viewer"
windows. In general, saving TKF files in TKF format is not recommended because they are
not viewable by most graphics programs. The "Convert" menu of the TKF window gives several
options for saving in a different graphic format: enhanced metafile, encapsulated postscript,
HPGL plotter, or Windows bitmap. The Windows bitmap conversion produces a very low-
resolution file — if you want to work with a better bitmap version, you can convert the TKF
file to an enhanced metafile and paste it into another graphics program (e.g., Adobe
Illustrator, Corel Draw, etc.) to save the enhanced metafile as a higher-resolution bitmap and
then edit the plot further.

The TKF "Help" menu opens a text file containing a description of the viewer's features,
including options for changing some colors in the TKF window itself (“View").

Another option is to save the file in PDF format using the “Print” function. The output PDF file
is readable by most graphics programs and the resolution is generally better.

Contact Information

If you have questions not be answered by these help files, feel free to contact Mike Glascock
at MURR.

Dr. Michael D. Glascock

Research Reactor Center

University of Missouri

Columbia, MO 65211

Email: GlascockM@missouri.edu

Laboratory Home Page: www.missouri.edu/~glascock/archlab.htm
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http://www.missouri.edu/%7Eglascock/archlab.htm

1. Import/export/concatenate/extract datasets

0 Go back to the Main Menu
1 Import data from Excel

2 Export data to Excel
3
4

Concatenate datasets
Extract subgroups from a Master dataset

1.1. Import data from Excel

This routine allows you to convert an Excel file to a Gauss dataset. Refer to the Data Files
section of the Introduction to this document to find out what the Excel data structure should
look like (some routines require slightly different structures, so please refer to the specific
routine you plan to use for any exceptions to these rules). When selected, this routine displays
a numbered list of .xls or .xlsx files in the current directory, or displays "There are no Excel
files in the current folder"”, in which case you must select the appropriate directory using the
Directory List in the Taskbar.

e Select file: You will be asked select a file from the list to be imported, by entering
its number or file name as listed (without the extension .xlIs or .xlsx).

o Select Worksheet: When a file is selected, you will be asked to select a worksheet
number in the file to import by entering its number. The single worksheet in a simple
Excel file with only one spreadsheet is number 1. If you wish to go back to the main
menu, enter "quit".

When the worksheet has been selected, the routine imports data from that
worksheet as a set of variables as defined by the Excel file.

e List variables with descriptive information: You may list the variables with
descriptive information, or if there are none, enter "none"r.

e Create the GAUSS dataset: Next enter the name of the dataset to be created (the
default, in parentheses, will be the name of the Excel file which you imported). The
routine will then create a .dat file of the name you enter, in the current directory.
You will then be asked whether you want to import another Excel file, and may
answer N orY.

1.2. Export data to Excel

This routine allows you to convert a Gauss dataset to an Excel file of the same structure.
When selected, it displays a numbered list of the dataset files (.dat) in the current directory,
with number of samples in each file and total number of samples in the directory. This
procedure may be faster if Excel is open.

e Select a dataset: Enter one of the datasets listed, by number or name.

e Enter a filename: Enter a name for the Excel file to be created. Pressing the Enter
key without entering a name creates a file with the default name (which is in
parentheses). If that filename already exists, you will be asked to either replace the
existing file with the one you are exporting, or to store the exported data in the next
available worksheet. Be patient, this procedure may take longer than you expect,
even for small datasets. To return to the main menu without making one of these
choices, enter "quit".



1.3. Concatenate datasets

This routine provides an easy way to put several Gauss datasets of the same structure
together quickly. This operation could also be done using either Excel or the Dataset
Manipulator (option 4), but this routine makes it much simpler. Make sure you have the same
structure in all of the datasets you wish to concatenate.

Select the datasets to concatenate: You may type ALL to concatenate all
datasets in the current directory or type the number (from the list given) of the first
of two datasets you wish to concatenate. After entering the first, you will be given a
prompt to enter the second dataset.

Enter name of dataset to be created

1.4. Extract subgroups from a Master dataset
A list of datasets in the working directory will be given, with the number of samples in each.
Descriptive categories must be present in a dataset in order for subgroups to be extracted.

Select the Master dataset from which subgroups will be extracted, entering either
number or name of a descriptive categories from the given list. If here are no
descriptive categories present in the dataset which you have entered, you will be
informed, and will have to start over.

Select a category to search for subgroups: If there are one or more descriptive
categories present in the dataset which you have entered, the will be displayed in a
numbered list, and you can enter name or number to search that category for
subgroups. The groups present in that category will then be displayed in a numbered
list.

Select group names to use when extracting subgroups: Enter a name or number
from the numbered list of groups present in the selected category.

Enter name of dataset to be created: This will name the dataset containing the
group selected.

2. Modify/sort/transform variables
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2.1. View variables in datasets
All of the datasets in the working directory will be displayed in a numbered list with the
number of samples in each.

¢ Select datasets in which to view variables: All or a specific dataset may be
selected by number or name. You may enter several datasets by number, separated
by commas, at the prompt or enter "All". If entering anything but "All", you will need
to press the Enter key a second time at the next prompt to display the variables.
Entering another dataset at the second prompt does not include that dataset in the
routine.

2.2. Sort element variables according to atomic number
All of the datasets in the working directory will be displayed in a numbered list with the
number of samples in each.

e Select datasets in which to sort variables: All or a specific dataset may be
selected by number or name. You may enter several datasets by number, separated
by commas, at the prompt or enter "All". If entering anything but "All", you will need
to press the Enter key a second time at the next prompt to sort the variables.
Entering another dataset at the second prompt does not include that dataset in the
routine. Elements will be sorted in atomic order followed by the descriptive variables
in alphabetical order.

¢ Enter name to be used for the sorted dataset. You also have the option of
replacing the original dataset file with the sorted one, using the same name, by
entering no new name. Use routine 1 (View variables), above, to view the results.

2.3. Remove variables from datasets

All of the datasets in the working directory will be displayed in a numbered list with the
number of samples in each. After one or more datasets are selected a list of variables in these
datasets will be displayed: you may choose one or more variables to remove from ALL selected
datasets (if different variables are to be removed from one or another dataset, repeat this
option with each dataset).

e Select datasets from which to remove variables: All or a specific dataset may
be selected by number or name. You may enter several datasets by number,
separated by commas, at the prompt or enter "All". If entering anything but "All",
you will need to press the Enter key a second time at the next prompt to replace the
variables. Entering another dataset at the second prompt does not include that
dataset in the routine. The current variable names in the selected datasets will be
displayed.

e Select variable(s) to be removed: Enter one or more variables by name or
number, separated by commas.

e Enter name to be used for the modified dataset: You also have the option of
replacing the original dataset file with the sorted one, using the same name, by
entering no new name. Use routine 1 (View variables), above, to view the results.

2.4. Rename variables in datasets
All of the datasets in the working directory will be displayed in a humbered list with the
number of samples in each.

e Select datasets in which to rename variables: All or a specific dataset may be
selected by number or name. You may enter several datasets by number, separated



by commas, at the prompt or enter "All". If entering anything but "All", you will need
to press the Enter key a second time at the next prompt to replace the variables.
Entering another dataset at the second prompt does not include that dataset in the
routine. The current variable names in the selected datasets will be displayed.

e Select variable(s) to be renamed: Enter one or more variables by name or
number, separated by commas. you will need to press the Enter key a second time
at the next prompt to continue. Entering another variable at the second prompt does
not include that variable in the routine.

¢ Enter new name(s) for selected variable(s): You will be asked to rename each
of the selected variables, one at a time.

o Enter name(s) of modified dataset(s): You also have the option of replacing the
original dataset file with the sorted one, using the same name, by entering no new
name. Use routine 1 (View variables), above, to view the results.

2.5. Replace missing values
All of the datasets in the working directory will be displayed in a numbered list with the
number of samples in each.

¢ Select datasets to replace missing values or type ALL
o Enter name of modified dataset The name of the selected dataset is the default;
it will be replaced if no other name is entered.

2.6. Modify entries for descriptive variables
This routine allows you to modify descriptive variables in a dataset. You may choose the
following options:

1. Modify a descriptive variable in a single sample
2. Modify a descriptive variable in a series of samples
3. Modify several descriptive variables in a single sample

2.7. Adjust dataset for dilution effect from calcium temper

This option performs a dilution correction to data for limestone- or shell-tempered pottery by
removing calcium. After the correction, the element Sr will also be removed. WARNING: if Ca
is greater than 40%, negative humbers will occur. if Ca values are < 1%, no adjustments will
be made.

You should identify the type of calcium temper present in your pottery based on the following
options:

1. Fresh-water shell

2. Salt-water shell

3. Limestone

After selecting the type of temper present, you have the option of correcting for the elements
Mn and Na that are often present in shell-tempered pottery. Based on a publication by
Cogswell, et. al. 1998, correction assumes that fresh-water shell has Mn = 578 ppm & Na =
1488 ppm. Salt-water shell and limestone have different Mn and Na concentrations depending
upon the particular region of the world. The program allow you to substitute different
concentrations for Mn and Na, if known.

If this correction results in negative values for Mn or Na, they are replaced by zeros, and you
will be given the option of removing the element from further calculations.



2.8. Add temper to a dataset of clays

This option allows you to simulate tempered pottery by diluting individual samples in a clay
dataset using values derived from a separate temper dataset. Be sure you have the same
variables in the same order in both datasets before using this procedure. The routine
computes an average chemical composition for the temper dataset and uses this average to
dilute samples in the clay dataset.

You will be asked to select a temper dataset, select a clay dataset, enter a number for the
percentage of temper (between 0 and 100) to be added to each clay sample, and enter the
name of the mixed tempered clay dataset to be created.

For example, a dataset named MIX25 can be created by mixing 25% of dataset TEMPER and
75% of dataset CLAY by entering the responses:

Select a temper dataset ======> TEMPER

Select a clay dataset ======> CLAY

Enter number between 0 and 100 for percentage of temper ===> 25
Enter name of mixed clay&temper dataset to be created ===> MIX25

2.9. Convert element concentrations into ratios

This option allows you to convert element concentrations in one or more datasets to ratios of
each element to a selected element in the dataset. Before using this routine, you may want
to check for missing values (Option 3.3) and make replacements (Option 2.5) , especially if
the element you wish to use as the denominator may be missing values in some samples.

After selecting the datasets, you will select one element to be used as a denominator in
converting to ratios in all datasets selected. For each modified dataset you may enter a new
name, (the default is to overwrite the original dataset).

2.10. Un-log legacy GAUSS 5.0 data from base 10

Older datasets which were converted to base-10 logarithms should be un-logged before being
used in the latest version of murrap.gcg. The latest version automatically converts ppm
concentrations to base-10 logarithms where appropriate during each routine.

3. List sample ANIDs/concentrations/descriptions

Options:

0 Go back to Main Menu

1 List sample ANIDS in each dataset

2 List sample concentrations & descriptions

3.1. List sample ANIDS in each dataset

All of the datasets in the working directory will be displayed in a numbered list. After selecting
one or more datasets, the ANIDS (in the ANID column) for each sample in the chosen datasets
will be listed.



3.2. List sample concentrations & descriptions

All of the datasets in the working directory will be displayed in a numbered list. After selecting
one or more datasets, a list of elements in these datasets is displayed, from which you may
select one or more. You may choose to list missing value replacements or not. Rounded
concentration values for the selected elements in each selected dataset will be displayed in
tabular form as shown below.

Values for selected variables in dataset ABC are:

ANID Mn Fe Rb Sr Y 7Zr
FMNVO1 543.87 16209 154.91 11.400 54.209 390.39
FMNVO02 563.43 14842 144.76 -= 55.917 372.77
FMNVO03 701.00< 15726 159.31 12.800 53.509 388.05
FMNVO04 573.13 17430 156.19 12.000 61.254 417.90
FMNVO05 561.03 16270 150.60 -- 54.423 389.01
FMNVO0 6 546.68 16103 157.29 12.000 63.054 416.53
FMNVO7 479.03 16644 149.35 11.500 +DEN< 393.04
FMNVO08 562.03 16450 163.05 12.100 63.021 411.58
Average 566.27 16209 154.43 8.975 50.673 397.41

+/- +/- +/- +/- +/- +/-
1-Sigma 61.82 742 5.90 5.550 20.865 16.13

< indicates the concentration deviates more than 2-sigma from the mean
* indicates the concentration is a calculated replacement value

Note: -- indicates missing values and +DEN indicates presence of a hon-numeric value.

4. Manipulate datasets

This displays datasets in the working directory and gives the option of starting the Dataset
Manipulator (MANIP.EXE), a separate program which allows one to transfer samples to and
from GAUSS datasets. A warning will be given if the datasets in the working directory are not
consistent: i.e. do not have the same variables in the same order. However, one may still
press the ENTER key to start the Dataset Manipulator; for example, if one wants to transfer
a subset of samples from one dataset to a new dataset, the consistency of other datasets
does not matter. (The Data Manipulator may also be started independent of MURRAP by
opening MANIP.EXE in the GSRUN folder.) When the Dataset Manipulator opens it will NOT
show files from the current working directory of the GAUSS runtime. You must change the
working directory using the Data Manipulator's "Change" button. There is a help file,
DMHelp.chm, in the GAUSS folder. It may not open automatically when you click the Dataset
Manipulator's "Help" button.
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5. Summary statistics

After selecting one or more datasets in the working directory, one is given the option of
printing the summary statistics to the GAUSS window or exporting them to an Excel file.
Exporting to Excel will be much faster if Excel is already open. The Excel file will be saved in
the working directory. The Excel file does not automatically open after export. Completion of
the exporting is indicated in the GAUSS window.

An example of the output from this routine is shown below:

SUMMARY STATISTICS for the dataset: KAN-1

| Normal Distribution | Lognormal Distribution |
Element | Mean SD %SD Fit | Mean SD Fit | Min Max N/18
Na 10136.69 1266.77 12.5 72.2 10059.65 1.14 72.2 7419.86 12539.61 18
Al 72745.66 4984.87 6.9 61.1 72583.51 1.07 e61.1 63896.98 81465.54 18
K 16886.53 2129.07 12.6 66.7 16767.18 1.13 66.7 14120.10 21952.64 18
Ca 9773.55 1634.12 16.7 61.1 9649.56 1.18 61.1 7700.40 12669.84 18
Sc 13.42 1.15 8.6 83.3 13.37 1.09 83.3 10.46 15.33 18
Ti 4005.16 333.20 8.3 72.2 3992.13 1.09 72.2 3471.52 4683.85 18
\ 117.18 15.95 13.6 77.8 116.14 1.15 77.8 84.91 148.84 18
Cr 328.53 91.58 27.9 83.3 317.76 1.30 77.8 193.55 600.93 18
Mn 830.81 169.37 20.4 66.7 811.77 1.26 77.8 459.38 1133.16 18
Fe 39112.89 4676.45 12.0 77.8 38827.74 1.14 83.3 26214.43 49367.23 18
Co 20.25 3.96 19.6 66.7 19.91 1.20 66.7 14.69 31.20 18
Ni 91.43 30.90 33.8 83.3 87.48 1.34 77.8 53.91 174.93 18
Zn 73.38 9.89 13.5 77.8 72.74 1.15 77.8 54.06 96.79 18
As 19.13 10.64 55.6 66.7 16.52 1.78 66.7 5.55 45.82 18
Rb 87.32 9.90 11.3 77.8 86.79 1.12 77.8 67.12 107.89 18
Sr 162.63 67.37 41.4 77.8 151.70 1.45 66.7 97.91 297.07 18
Zr 129.32 16.79 13.0 72.2 128.27 1.14 72.2 99.24 161.47 18
Sb 0.64 0.30 47.5 83.3 0.59 1.46 77.8 0.40 1.44 18
Cs 4.49 0.65 14.4 66.7 4.44 1.16 66.7 3.37 5.47 18
Ba 665.21 140.15 21.1 50.0 650.92 1.24 50.0 433.05 851.50 18
La 27.49 1.95 7.1 61.1 27.42 1.07 e61.1 23.85 30.91 18
Ce 58.58 3.65 6.2 61.1 58.47 1.07 e61.1 50.89 63.87 18
Nd 23.62 1.60 6.8 66.7 23.57 1.07 66.7 20.21 26.11 18
Sm 5.03 0.28 5.6 72.2 5.02 1.06 77.8 4.40 5.36 18
Eu 1.12 0.08 7.3 72.2 1.12 1.08 72.2 0.93 1.25 18
Tb 0.71 0.06 9.1 66.7 0.71 1.09 66.7 0.63 0.87 18
Dy 4.11 0.28 6.8 72.2 4.10 1.07 72.2 3.54 4.56 18
Yb 2.47 0.18 7.4 72.2 2.46 1.08 72.2 2.15 2.87 18
Lu 0.35 0.02 6.3 66.7 0.35 1.06 66.7 0.32 0.39 18
HE 5.75 0.84 14.7 83.3 5.69 1.17 83.3 3.83 7.10 18
Ta 0.84 0.06 7.1 77.8 0.83 1.07 77.8 0.73 1.00 18
Th 9.54 0.93 9.7 72.2 9.50 1.10 72.2 7.88 11.69 18
U 2.32 0.54 23.2 72.2 2.27 1.23 72.2 1.77 3.63 18
SD = Standard deviation
Fit = Percentage of samples within 1 SD
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6. Hierarchical cluster analysis

This routine computes the squared mean Euclidean distance (SMED) between all samples and
constructs a dendrogram using the average linkage algorithm. The routine does not
automatically replace missing values in a dataset, but considers only non-zero values in the
dataset. If you want the routine to consider replacements for missing values, so be sure to
replace before you run this routine otherwise the results may be unsatisfactory.

You may select one or more datasets in the working directory. Each dataset will be given a
separate symbol and color in the resulting dendrogram. All samples in a single dataset will
have the same color. After selecting the elements to be included in the cluster analysis, the
dendrogram is displayed in a separate "TKF File Viewer" window with has options for saving
the file in other formats. A dendrogram is shown below:

+ KAN=3 4 NAKO19

—4 + NAKOBE
® KAN-4 § NAkod4 )—|—|_
@ NAK0B2
® NAKO20
©® NAKO31
@ NAKO26

0.00 0.01 0.02 0.03 0.04
Log of Euclidean distance (ppm)

Be reminded that the interpretation of cluster analysis is because it fails to consider
correlations between elements. Cluster analysis is a valuable tool, but should NEVER be
consider the final answer for most archaeometric investigations.
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7. Principal components analysis

Principal components analysis (PCA) is a statistical procedure that uses orthogonal
transformation to convert a set of observations of potentially correlated variables into a set
of uncorrelated variables can principal components (PCs). The transformation is defined in
such a way that the first PC explains the largest possible variance in the dataset, and
subsequent PCs explain the highest amount of remaining variance under the constraint that
they be orthogonal to all preceding components. PCA is useful as an exploratory tool to reveal
the internal structure of the data. Because the earliest PCs explain a greater portion of the
variance, PCA is often used as a dimension-reduction technique.

This routine performs a PCA on a set of one or more Gauss datasets using the variance-
covariance matrix. After choosing the datasets to include in the analysis (the datasets must
be consistent in structure — same variables in same order), you may choose the elements
that will be included.

In order for PCA to work properly, the number of samples must be equal to or greater than
the number of elements considered. The percentage of variance explained by each principal
component is displayed in a table along with the cumulative variance. You have the option of
viewing the PC matrix and the option of saving it as an Excel file (this file will be saved in the
working directory). You can also save the PC transformation matrix (*.fmt), which can be
used later for creating principal component plots and for calculating probabilities for group
membership using Mahalanobis distance calculations (this matrix file is also saved in the
working directory). You can also save the PC scores in an Excel file. The name of the Excel
file is assigned by the program and will be saved in the working directory.

A typical output from PCA is shown below:

PERCENT OF VARIANCE EXPLAINED BY THE PRINCIPAL COMPONENTS

PC $%Variance Cumulative PC $%Variance Cumulative
1 50.71 50.71 18 0.19 99.14
2 16.01 66.71 19 0.17 99.31
3 8.92 75.63 20 0.12 99.43
4 6.21 81.83 21 0.11 99.54
5 4.21 86.04 22 0.09 99.62
6 2.67 88.71 23 0.07 99.69
7 2.25 90.96 24 0.06 99.75
8 2.00 92.96 25 0.06 99.81
9 1.32 94.29 26 0.05 99.85

10 0.96 95.24 27 0.03 99.89

11 0.85 96.10 28 0.03 99.91

12 0.81 96.90 29 0.02 99.94

13 0.64 97.55 30 0.02 99.96

14 0.51 98.06 31 0.02 99.98

15 0.37 98.42 32 0.02 99.99

16 0.28 98.71 33 0.01 100.00

17 0.25 98.95
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PCA RESULTS BASED ON VARIANCE-COVARIANCE MATRIX

The first 7 PCs explain 91.0% of the variance in this assemblage.

PC1 PC2 PC3 pPC4 PC5 PC6 PC7
Element -50.71% -16.01% -8.92% -6.21% -4.21% -2.67% -2.25%
As -1.18E-01 -3.48E-01 -7.23E-01 2.26E-01 4.75E-01 -1.12E-01 4.73E-02
Mn -3.11E-01 4.90E-01 -2.10E-01 -1.24E-01 7.63E-02 99E-01 3.43E-01
Ca -8.62E-02 1.42E-01 -4.28E-01 -1.64E-01 -4.27E-01 2.60E-01 -3.96E-01
Ni -3.75E-01 1.75E-01 1.48E-01 2.27E-03 2.04E-01 -2.28E-01 -5.46E-01
Sr -7.62E-02 83E-02 -2.60E-01 -3.36E-03 -5.15E-01 -4.13E-01 -1.19E-01
Cr -5.56E-01 -6.95E-02 2.18E-01 -5.95E-02 1.91E-01 -1.94E-01 -1.01E-01
Sb -7.95E-02 -1.13E-02 -7.29E-02 5.49E-01 -1.91E-01 -3.70E-02 1.22E-01
Cs -1.20E-01 -1.97E-02 8.14E-02 99E-01 -2.28E-01 6.50E-02 2.12E-01
Na 79E-02 97E-01 -6.94E-02 -1.15E-01 -3.52E-02 -2.73E-01 2.15E-01
U 4.20E-02 9.51E-02 4.11E-02 83E-01 -8.74E-02 -8.01E-02 -2.02E-01
HE .00E-02 -3.79E-02 1.33E-02 8.62E-02 1.18E-01 3.48E-01 -2.45E-01
Th 2.52E-01 2.15E-01 2.35E-03 1.01E-01 1.44E-01 -2.36E-01 -2.39E-02
Co -3.33E-01 2.28E-01 -5.23E-02 -3.27E-02 3.44E-02 -1.40E-02 1.51E-01
Zr 3.49E-02 5.13E-03 1.44E-02 1.13E-01 5.58E-02 3.17E-01 -2.08E-01
Ba 3.86E-02 1.68E-02 -2.44E-01 -1.44E-01 -7.86E-03 -1.02E-01 -1.62E-01
K 1.87E-01 1.53E-01 -9.97E-02 -7.20E-02 8.14E-02 -1.44E-01 6.25E-02
Rb 1.79E-01 1.54E-01 1.19E-02 -1.25E-02 1.14E-01 -1.61E-01 7.32E-02
Ta 1.11E-01 6.79E-02 7.12E-02 2.30E-01 3.57E-02 6.59E-02 -1.25E-01
Ti -1.19E-01 -1.08E-02 5.92E-02 2.22E-01 -8.89E-02 1.06E-01 -3.90E-02
Nd 1.04E-01 2.01E-01 -4.96E-02 8.83E-02 1.14E-01 -3.57E-02 -1.05E-01
\ -2.16E-01 -3.97E-02 -1.21E-03 1.16E-01 -6.48E-02 2.60E-02 1.38E-01
Sm 9.24E-02 2.04E-01 -3.36E-02 6.80E-02 1.14E-01 -2.25E-02 -8.67E-02
La 1.08E-01 1.91E-01 -2.17E-02 1.22E-01 5.65E-02 -4.55E-03 -6.33E-02
Zn -3.39E-02 1.85E-01 -4.59E-02 5.61E-02 3.89E-02 -1.48E-01 4.02E-02
Ce 1.03E-01 1.92E-01 -2.43E-02 6.25E-02 7.10E-02 28E-03 -6.51E-02
Tb 5.61E-02 1.97E-01 -2.39E-02 5.80E-02 1.02E-01 1.77E-02 -4.20E-02
Dy 4.92E-02 1.69E-01 -1.05E-02 8.26E-02 9.72E-02 5.20E-02 -8.01E-02
Yb 3.84E-02 1.35E-01 -2.91E-03 9.91E-02 1.03E-01 9.33E-02 -5.55E-02
Eu -5.32E-02 1.75E-01 -3.76E-02 1.15E-01 -2.17E-02 -4.47E-03 1.47E-02
Fe -1.34E-01 3.45E-02 2.73E-02 1.13E-01 -2.22E-02 -8.22E-02 9.19E-02
Lu 3.01E-02 1.09E-01 -1.57E-04 1.38E-01 7.30E-02 6.58E-02 -6.90E-02
Sc -9.64E-02 6.02E-02 5.46E-02 6.46E-02 2.89E-02 -7.92E-02 3.57E-02
Al 3.66E-02 8.03E-02 -1.15E-03 7.82E-02 -1.04E-02 -1.02E-01 2.75E-02
Eigenvalue 0.3986 0.12583 0.07009 0.04878 0.03307 0.02097 0.01771
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8. Canonical discriminant analysis

CDA is a dimension-reduction technique similar to principal components analysis. Given two
or more groups of observations with measurements on several variables, canonical
discriminant analysis derives a linear combination of the variables that has the highest
possible multiple correlation with the groups. This maximal multiple correlation is called the
first canonical correlation. The coefficients of the linear combination are the canonical
coefficients or canonical weights. The variable defined by the linear combination is the first
canonical variable or canonical component. The second canonical correlation is obtained by
finding the linear combination uncorrelated with the first canonical variable that has the
highest possible multiple correlation with the groups. The process of extracting canonical
variables is repeated until the number of canonical variables equals the number of original
variables or the number of classes minus one, whichever is smaller.

The minimum requirements to perform CDA are:

Two or more groups

At least two observations per group

The number of variables must be less than the number of samples by two.
No variables may be a linear combinations of another variable

DA WNR

This routine performs a canonical discriminant analysis (CDA) on two or more groups. Each
of the groups must be in a separate dataset — these datasets must contain the same elements
in the same order. If missing values would be a problem in the analysis they should be
replaced before using this routine. After choosing two or more datasets, you may select
variables to include in the analysis. If any variable is missing values in all samples in a group,
it will automatically be removed from the analysis. The routine automatically limits the
number of variables you can choose, based on the limitations inherent in the CDA method. A
larger number of samples in the groups allows the use of more variables.

A table of the separation by the canonical discriminants (CDs) is produced, giving the percent
separation for each CD and the cumulative percent separation. You can then select the
number of CDs to include in the summary of results (the default is all) and can print this
summary to the screen or save it in an Excel file. This summary of results is a table listing
the contribution of each element (factor loadings) to each canonical discriminant function.
Values are also given for Wilke's Lambda, approximate F, and p. You may save a CD
transformation matrix which can later be used to produce a CD plot, or re-used in this routine
to display the results again.

For example, assume we have four datasets that have a sufficient number of samples to
perform CDA. The output might look something like this:

SEPARATION BY THE CANONICAL DISCRIMINANTS

CD %$Separation Cumulative
1 74.70 74.70

2 23.06 97.76

3 2.24 100.00
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CANONICAL DISCRIMINANT ANALYSIS BASED ON 4 GROUPS:

Elemental contributions to the canonical discriminant functions.

CD1 CD2 CD3

Variable Magnitude (74.70%) (23.06%) (2.24%)
Fe 1.34 -1.24E0 -2.19E-1 4.59E-1
Sc 1.27 1.03E0 7.58E-3 -7.33E-1
Eu 1.18 -8.69E-1 6.91E-1 3.97E-1
Al 1.16 7.69E-1 7.53E-1 -4.29E-1
Sm 0.82 8.08E-1 1.10E-1 -1.10E-1
Cs 0.63 -3.48E-1 -4.46E-1 2.81E-1
Cr 0.60 -4.76E-1 3.47E-1 -1.15E-1
Rb 0.57 3.18E-2 4.75E-1 -3.05E-1
Sb 0.52 4.89E-1 3.08E-2 -1.71E-1
HEf 0.50 -4.89E-1 -9.93E-2 7.90E-2
Th 0.50 4.17E-1 -9.12E-2 2.52E-1
Lu 0.45 -3.93E-1 -1.59E-1 -1.40E-1
Na 0.39 -2.00E-1 2.97E-1 1.52E-1
Nd 0.37 1.20E-2 -2.69E-1 -2.60E-1
U 0.36 -2.16E-1 -2.50E-3 -2.92E-1
Ti 0.35 2.32E-3 -3.16E-1 1.58E-1
Zr 0.34 2.96E-1 -6.39E-2 1.59E-1
Tb 0.28 2.78E-1 1.70E-2 -4.74E-2
Co 0.27 8.73E-3 -1.43E-1 2.27E-1
Ba 0.26 -1.27E-1 -1.44E-1 1.81E-1
Ta 0.26 -1.41E-1 1.53E-1 1.48E-1
Dy 0.25 -1.06E-1 -9.13E-2 2.04E-1
Zn 0.24 -1.65E-2 1.58E-1 1.77E-1
Ca 0.22 2.03E-1 2.26E-2 -7.04E-2
Ce 0.21 -1.94E-1 2.10E-2 8.79E-2
Sr 0.21 -1.86E-1 -9.69E-2 1.66E-2
K 0.21 -1.48E-2 9.74E-2 1.81E-1
Ni 0.18 -1.57E-1 8.04E-2 1.84E-2
La 0.16 -1.19E-1 -1.10E-1 3.10E-2
Yb 0.16 1.65E-2 -1.51E-1 4.14E-2
Mn 0.11 -1.63E-2 4.05E-2 -1.00E-1
Y 0.09 1.56E-3 -4 .35E-2 -8.44E-2
As 0.08 2.81E-2 1.82E-2 6.79E-2

Wilk's lambda: 3.8593888e-006
Approx. F:
50.341833
p-value:
4.6368128e-047

Wilk’s lambda is a measure of the percent variance in dependent variables not explained by
differences in the independent variables. The scale ranges from 0 to 1 and a value near zero is
ideal.
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9. Euclidean distance search

This routine searches one or more reference dataset[s] for the closest samples to each of the
unknown samples in a datasets, as measured by squared mean Euclidean distance. The
individual calculated distance values are the average of the squared differences between the
listed concentrations for all elements in the sample.

The concentrations values in the datasets are automatically transformed to base-10 log values
during this calculation. Datasets chosen for this routine must have the same elements to avoid
an error during the analysis. After choosing the unknown dataset containing one or more
unknown samples, you may choose one or more reference datasets to search for samples
compositionally closest to the unknowns. Elements completely missing values in any of the
datasets are automatically removed. You can choose some or all of the remaining elements
to be included in the calculations.

You may choose to list up to 20 [the default is 10] results for each of the unknown samples.
You will not get an error if the number of samples you choose is smaller than the number of
reference samples. The routine just lists as many as possible up to the indicated number.

You have the choice of listing the results by individual sample or in a summary matrix, and
can either save these results in a text file (without displaying it on the screen) or display the
results on the screen (in which case you can save them in a text file using the "Save As"
option under the "File" menu).

The calculated distance values have no units. In our experience, the relative importance of
individual distance values in identifying related samples is approximately as follows:

Distance values: <0.010 are excellent
>0.010 and <0.015 are very good
>0.015 and <0.020 are good
>0.020 and <0.025 are fair
>0.025 are poor

A sample output is shown below:

RESULTS OF SQUARED-MEAN EUCLIDEAN DISTANCE SEARCH

Using the following transformation matrix: PCA-KAN.fmt
Results are based on the following variables:
PCl PC2 PC3 PC4 PC5 PC6 PC7

Reference samples closest to: NAKO019

ANID Distance Chem Group
NAKO79 0.0099 KAN-5
NAKO71 0.0111 KAN-5
NAK048 0.0121 KAN-5
NAKO045 0.0123 KAN-5
NAKO067 0.0123 KAN-5
NAKO054 0.0131 KAN-5
NAKO77 0.0133 KAN-5
NAKO23 0.0136 KAN-5
NAKO064 0.0143 KAN-5
NAKO14 0.0144 KAN-5

17



10. Group membership probabilities

This routine produces a table of group membership probabilities based on the Mahalanobis
distance of each sample from the centroid of the group. It assumes that you have previously
assembled one or more reference groups of samples into separate datasets. The calculations
assume that each reference dataset contains samples from only one reference group and that
each reference group is contained in only one reference dataset. Other datasets can contain
unrelated samples that you wish to compare with the reference groups, and you can compare
the reference groups with each other. All datasets must contain the same elements in the
same order, and it would be best to take care of missing values before using this routine if
missing values would be a concern in your case. Concentration values are automatically
converted to base-10 log values during the calculations.

Computation of Mahalanobis distance requires that your groups contain at least two more
samples than variables (the more the better). When performing this calculation with reference
groups containing a small number of samples, you may find it more useful to use principal
components rather than elements as variables, because the first few principal components
usually comprises much of the variance in the group. In this case you should first perform a
principal component analysis on any reference group you will be using and save the
transformation matrix in the same directory you will be using for the group membership
calculations. If there are any transformation matrices in the working directory, you will be
given the option to choose one to use in this calculation — otherwise it is assumed that you
will be using elements as variables.

You will first choose one or more reference groups from a list of datasets in the working
directory. If you choose more than one reference group, individual samples will be compared
to all groups. Group membership for reference groups will be "jackknifed" which means that
each sample will be removed from the host group before the distance and probability
calculations are made. This means that the sample's values will not contribute to the group's
mean or to its distribution. Samples located near the edge of a group are likely to have
considerably reduced probabilities of membership to that group when using jackknifed
calculations.

Next you may choose one or more datasets containing samples that are not part of a reference
group — if you are choosing none, be sure to type "none" at the prompt; there is no default
entry. You may also choose the same datasets that are used for reference groups here — if
you do so the routine will also list them with non-jackknifed values for each sample's distance
and membership probability.

Next you will choose which elements or principal components to use in the calculations; the
routine automatically limits your choice based on the number of samples in the reference
groups.

The result is one or more tables listing group membership probabilities (in percent) for each
sample for each of the reference groups, and for each unknown sample for each of the
reference groups. A column is included which suggesting the best group for each sample
based on its highest membership probability over 0.001%. These tables may be saved as a
text file by using the "Save As" option under the "File" menu.
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You are finally given the following options for recalculation of the probabilities:

Go back to the Main Menu

Recalculate membership probabilities

Sort samples based on probability

Change variables used in classification
Assume very large groups

List Mahalanobis distance values on screen
Save results to an Excel file

o U W NP O

In particular, option 3 is useful for changing the elements or principal components used in the
calculations, which may give very different results. This is recursive. When you make the
desired change you are brought back to this list of options and must then choose "1" to see
the recalculated results based on your changes. Option 5 will list the Mahalanobis distances
from which the probabilities are derived. A sample output is shown below:

GROUP CLASSIFICATION USING MAHALANOBIS DISTANCE

Using the following transformation matrix: PCA-KAN.fmt
Results are based on the following variables:
PCl PC2 PC3 PC4 PC5 PC6
The first 6 PCs explain 88.7% of the variance
Best Group is based on highest membership probability > 0.001%

Membership probabilities (%) for samples in group: KAN-2
Probabilities calculated after removing each sample from group.

ANID KAN-2 KAN-3 Best Group
NAKO0O3 28.262 0.141 KAN-2
NAKO0O8 55.611 0.182 KAN-2
NAKO12 37.079 0.205 KAN-2
NAKO17 64.586 0.234 KAN-2
NAK032 2.566 0.231 KAN-2
NAK034 94.004 0.147 KAN-2
NAKO035 33.858 0.141 KAN-2
NAKO036 90.285 0.126 KAN-2
NAKO037 20.442 0.163 KAN-2
NAKO041 4.567 0.127 KAN-2
NAKQ042 98.689 0.139 KAN-2

Membership probabilities (%) for samples in group: KAN-3
Probabilities calculated after removing each sample from group.

ANID KAN-2 KAN-3 Best Group
NAKO019 0.908 20.283 KAN-3
NAKO050 1.223 94.888 KAN-3
NAKO052 1.408 29.805 KAN-3
NAKO053 1.706 28.568 KAN-3
NAKO055 0.380 10.227 KAN-3
NAK059 1.304 97.021 KAN-3
NAKO066 1.375 11.843 KAN-3
NAKOQO72 2.788 13.529 KAN-3
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11. 2-D Compositional plots

This routine allows you to produce scatterplots (i.e. bivariate plots) of elements or PCs in
Gauss datasets, with the option of plotting points, confidence intervals, labels, etc. You need
to have all of the groups you want to plot in separate datasets, and all of the datasets must
have the same variables in the same order. Each dataset will be given a separate color and
symbol in the resulting plot, and the calculation of confidence ellipses assume a dataset is a
valid group, so collect your samples into datasets accordingly. But you do not have to calculate
confidence intervals for datasets containing unrelated samples if you wish only to display their
points. A dataset can contain only a single sample if you wish it to have a unique color and
symbol on the plot. A simple scatterplot for is shown below.
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The figure shows a log-log scatterplot for elements Cr and La on samples of pottery from a
site located in Turkey. The sample groups are surrounded by 90% confidence ellipses
indicating that approximately 90% of the samples will be inside the ellipse. If desired, the
confidence interval can be adjusted to another value.

If a principal component analysis (PCA) or canonical discriminant analysis (CDA) has been
performed previously, its transformation matrix can also be used to produce what is known
in the literature as a "biplot" (Neff 1994). An RQ-mode biplot contains both data points and
vectors. The vectors display each element's contribution (both direction and relative
magnitude) to the two principal components used in the plot. These vectors also display some
information about the relationships of these elements one another. An RQ-mode biplot for
the Turkish pottery used for illustration here is shown below.
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Principal components 1 and 2 were used to create this plot. By definition, the PCs are
orthogonal to one another. PC #1 explains 50.7% of the overall variance in the data and PC
#2 explains 16.0% of the variance. The vectors indicate the direction and magnitude of
increasing concentrations for each element. Confidence ellipses indicate the default 90%
confidence interval.

You are asked to choose one or more datasets to display in the plot. Next you will select what
components to display for each dataset. You can choose a different set of components for
each dataset (the default is 3):

Available Plot Components

1 Plot Datapoints 5 Plot, ellipse, & label points
2 Ellipse only 6 Plot, ellipse & label outliers
3 Plot & ellipse 7 Plot Nothing

4 Plot & label points

In this list of options "Plot" refers to datapoints: eg: "Plot & ellipse" displays the datapoints
and the ellipse for a given dataset.

After selecting the component option for each dataset, you can specify the confidence interval
to use for all datasets for which you have chosen to display one. Enter a number representing
the percent but without the percent sign (the default is 90).

Next you will be given a list of variables in the datasets, either elements or principal
components, and asked which to use for the X-axis and for the Y-axis. You can specify more
than one variable for each axis: in this case a number of plots will be produced, each with
only one of the variables for each axis.
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You have the option of replacing missing values, if any, in all of the groups to be plotted (the
default is yes). You should not use this option if you have any datasets containing unrelated
samples that you are not treating as a group but have collected only for the purpose of
displaying points, because the calculations for replacing missing values assume the samples
in a given dataset are a valid group.

A plot will be displayed in a separate "TKF File Viewer" window. After the TKF plots have been
created, the following options can be used to change various features of the plots:

0 Exit
1 Plot Again

Options for modifying plots are as follows:

2 Change axis limits 7 Change plot elements or PCs

3 Change plot components 8 Change axis labels

4 Change plot symbols 9 Change axis from log to linear
5 Change plot colors 10 Change plot size

6 Change legend position

The procedure for making these changes is recursive: when you have selected an option and
specified the new values, you are returned to this list of options and must enter "1" (Plot
Again) in order to produce a new TKF window with the changed plot. The TKF windows
containing the previous plots are not altered or closed, so if you do make changes a few times
you may want to close the TKF windows containing the previous plots, keeping in mind that
they are not automatically saved. However, since the all the TKF windows are in the same
screen position you can cycle through them easily by clicking on one after another in the
taskbar, useful for comparing plots of different variables for the same groups.

Most of these options are obvious, and the default values are the current values, so you can
choose each option in turn to see what is offered without fear of losing the current appearance
of the plot. At any rate the current plot window is not altered when a change is made.

A few notes:

2. Change axis limits:

Pay close attention to the current limits (minimum and maximum values in ppm displayed on
the X and Y axis, respectively) and make changes accordingly. Enter the cartesian coordinates
in this order, with a comma between each value:

minimum X-value, maximum X-value, minimum Y-value, maximum Y-value

The value zero (0) is not allowed.

3. Change plot components:
This also allows you to change the size of the confidence interval used to draw ellipses.

7. Change plot elements:
This refers to the variables used on the axes of the plots, either elements or principal
components.

9. Change axis from log to linear:
The default is log values on both axes.
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12. 3-D Compositional plots

This routine allows you to create scatterplots in three dimensions (trivariate plots). 3D plots
are not commonly used in publication since they tend to be difficult to read. This routine is
mainly intended for use as a data exploration tool. Here is an output example:

+ KAN—1
® KAN-2
B KAN-3
A KAN-5

pc # 3 (8.9%)

The example shows a simple trivariate plot showing three groups of data. The routine works
in much the same way as the 2D scatterplot routine, except that you must select three
variables. As with 2-D plots, 3-D plots include a legend: each group is given a different symbol
and color. If you have a previously-created Principal Component transformation matrix in the
working directory, you may choose to use it, in which case your variables will be principal
components. If there is no PC transformation matrix in the working directory, then you will

be using elements as variables. For more information, please refer to the help entry for 2D
scatterplots.
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13. Ternary diagrams

This routine allows you to produce a ternary scatterplot from Gauss datasets. This is a way
to display the relations between datapoints and groups with respect to three variables; it may
be easier to portray these relations in a ternary plot than in a 3-D plot. Each dataset will be
given a separate color and symbol in the resulting plot, so collect your samples into datasets
accordingly. A dataset can contain only a single sample if you wish it to have a unique color
and symbol in the plot. You may choose to have the routine replace missing variables in all
or none of the datasets; if you wish to replace missing variables in some, but not all, of the
datasets, do so before using this routine.

You will first be asked to choose one or more datasets to display in the plot. Next you will
select three elements, one for each of the three axes of the ternary diagram. You will also
have the option of replacing missing variables in all or none of the datasets.

The ternary diagram produced by MURRAP will be displayed in a separate "TKF File Viewer"
window. In general, Ternary diagrams are hard to interpret and have limited application. See
the example for several related obsidian sources in Argentina below:

=
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&
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14. Distribution plots

This routine allows you to create a distribution plot displaying a histogram for a selected
element from data in one or more datasets.

You may choose more than one element — a separate plot will be produce for each
element. You have the option to display best-fit curves (default is yes), to specify the bin
size (default is auto), and to select the color of the best-fit curves. The plot will be displayed
in a separate "TKF File Viewer" window and may be saved in other formats. The routine itself
does not offer options for making changes to the TKF file. Here is an example of what this
routine will produce:

1

I | | ! | |

— —— Normal Distribution
Lognormal Distribution

Number of Observations

600 700

Cr (ppm)
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15. Compositional profile plots

This routine allows you to create a compositional profile plot for individual samples or groups
of samples, displaying concentrations of selected elements in the form of a profile. Samples
which are to be treated as a single group in the plot should be in a single dataset: the routine
will plot the mean concentration values of the group's elements, with standard deviations
indicated if desired. Several groups can be plotted, each group in its own dataset. The plot
for each will be given a separate symbol and color. Put each individual sample in its own
dataset if you want each to have a unique symbol and color on the plot.

You will first select one or more datasets containing samples which are to be treated as
individual samples in the plot (you may enter NONE), and will then select one or more datasets
containing groups you wish to plot. You have the option of replacing missing values in
individual samples (default is no).

After selecting the elements to include, you have the option to plot these elements in order
of decreasing concentration (default is no).

The plot will be displayed in a separate "TKF File Viewer" window and may be saved in other
formats. The routine will present the following options for making changes to the TKF file:

0 Exit
1 Plot again

Options for modifying the profile plot are as follows:

2 Data distribution 7 Figure size

3 Axis limits 8 Axis scale (log/lin)

4 Plot symbols 9 Legend position

5 Plot colors 0 Plot elements

6 Axis label 1 Group components
Each option will have its defaults, so you can choose each to see what they offer and press
the Enter key to get back to the option list without making changes. You must enter "1" (Plot
again) in order for any changes you've made to be effected. When you plot again, a new TKF
file with changes is produced in a new TKF window. The previous TKF file remains open and
unchanged.
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17. Best Relative Fit (Mommsen)

This routine applies a corrective 'best relative fit factor', also called a 'dilution factor', to each
sample of a group of samples in a dataset, using an adaptation of Mommsen's method
(Mommsen et al. 1988). After selecting datasets, you may select the elements to use in the
calculations.

A table is produced for each dataset which contains four columns: 1) sample IDs (ANIDs), 2)
dilution factors for each sample, 3) the spread for each sample, and 4) an "Evaluate" column
indicating which elements should be evaluated based on a large value for their dilution factor
or spread. To save this table in a text file, use the "Save As" option under the "File" menu. If
you have used only one dataset, you have also the option of extracting samples from a group
based on the dilution factors, to produce a new subgroup (default is No).

18. Total Variation Matrix (Aitchison/Buxeda)

This routine calculates a "total variation matrix" which can be used to assess the degree of
variation in single dataset and the relative contribution of each element to that variation. The
elements contributing most and least to the dataset's variation are identified, and ratios of
the other elements to the latter element can be calculated. The method used is based on
Aitchison's log-ratio technique and recent publications by Buxeda i Garrigos 1999 and Buxeda
i Garrigos and Kilikoglou 2003.

After selecting a single dataset for analysis, and elements to include, a variation matrix is
produced in the GSRUN window, as well as a table giving the relative variations of elements
in the dataset, the total variation, and the elements contributing most and least to the
dataset's variation.

You may save this data to a text file using the "Save As" option in the GSRUN "File" menu.
The structure of the tables also makes it easy to copy and paste them directly from the GSRUN
window into an Excel spreadsheet cell and use Excel's "Text to Columns" command under its
"Data" menu to recover the table's structure in the spreadsheet.
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